This post examines some examples of the full roots of expressions in R1. Calculate the full root as the root of the Counter times the root of the Unitary.
Examples
- √(x??) = √x*√(1‡x‡x )
- For example where x = 16^:
- √(16^) = √16*√1^ = 4*1^ = 4^ or
- √(16^) = √16*√1^ = 4*1v = 4v
- For example where x = 16^:
- √(2x2 ) = √2*√x2*√(1‡x‡x) = x√2*√(1‡x‡x)
- For example where x = 3^:
- √(2*3^2 ) = √(18^) = √18*√1^ = 3√2*1^ = 3√2^ or
- = 3√2*1v = 3√2v
- √(2*3^2 ) = √(18^) = √18*√1^ = 3√2*1^ = 3√2^ or
- For example where x = 3^:
- √((x + 1^/x)2 + –4(x + 1v/x))
- = √(x2 + 2^ + 1^/x2 + –4x + 4^/x)
- For example where x = 3^:
- = √((3^+ 1^/3^)2 + –4(3^ + 1v/3^)) = √((10/3^)2 + –4(8/3^))
- = √(100/9^ + 32/3v)
- = √(4/9^) = 0.667^ or 0.667v
- Or = √(3^2 + 2^ + 1^/3^2 + –4*3^ + 4^/3^)
- = √(9^+ 2^ + 1/9^ + 12v + 4/3^)
- = √(4/9^) = 0.667^ or 0.667v
- = √((3^+ 1^/3^)2 + –4(3^ + 1v/3^)) = √((10/3^)2 + –4(8/3^))
- Calculate the root of the last expression directly as:
- √((x^ + 1^/x)2 + –4(x^ + 1v/x))
- = √((3^ + 1^/3^)2 + –4(3^ + 1v/3^))
- = √(3.333^2 + –4(2.666^)
- = √(11.11^ + 10.664v)
- = √(0.446^) = 0.667^ or 0.667v
- √((x^ + 1^/x)2 + –4(x^ + 1v/x))
Conclusion
Our online calculator can help with the calculation of the roots of R1 expressions.
Next: Exponentiation
Previous: Roots Definition