January 3, 2025
Search
Search
Close this search box.

Quantum – Theory – Single, Multipart and Mega Qubits

This post covers the features of single and multipart qubits.

Single Qubit Features

  • A qubit is described by the equation (a|jˆ>  + b|jv>) and is derived from the generic formula for a quantum state: |ψ> = cos (𝜭/2) |jˆ>  + e sin( 𝜭/2) |jv>.
  • The σx gate inverts a qubit. For example: it allows |j^> to change to |jv>, |j^> to change to |jv> and vice versa.
  • The top row and bottom row of a qubit’s matrix can be multiples of either 0, ^, v, i^ or iv Opposite Values.
  • A qubit of the equivalent of  5|j^> + 3|jv> qubits is normalised  in the equation: 
    • 5/√(52 + 32)|j^> + 3/√(52 + 32)|jv>
    • = 5/√(34)|j^> + 3/√34)|jv>

Flip Operation

  • The flip  operation is the short for the σf gate, denoted by , and changes the signs of both elements of the qubit. For example: 
    • |j^> = \begin {bmatrix} 1^h  \\ 0 \end{bmatrix}=\begin {bmatrix} 1^v \\ 0 \end{bmatrix}

  • – –|j^> = – –\begin {bmatrix} 1^h  \\ 0 \end{bmatrix}  =\begin {bmatrix} 1^v  \\ 0 \end{bmatrix}  =\begin {bmatrix} 1^h  \\ 0 \end{bmatrix}

  • |^> = \begin {bmatrix} 1^h/\sqrt{2}  \\ 1^h/\sqrt{2} \end{bmatrix}=\begin {bmatrix}1^v/\sqrt{2} \\ 1^v/\sqrt{2} \end{bmatrix}

  • |v> = \begin {bmatrix} 1^h/\sqrt{2}  \\ 1^v/\sqrt{2} \end{bmatrix}=\begin {bmatrix}1^v/\sqrt{2} \\ 1^h/\sqrt{2} \end{bmatrix}

  • |i^> = \begin {bmatrix} 1^h/\sqrt{2}  \\ i^h/\sqrt{2} \end{bmatrix}=\begin {bmatrix}1^v/\sqrt{2} \\ i^v/\sqrt{2} \end{bmatrix}

  • |iv> = \begin {bmatrix} 1^h/\sqrt{2} \\ i^v/\sqrt{2} \end{bmatrix}=\begin {bmatrix}1^v/\sqrt{2} \\ i^h/\sqrt{2} \end{bmatrix}

  • Flipped qubits cancel each other out. For example: |jv> + |jv> = 0

Multipart Qubit Features

  • Quantum computers use single qubits to form multipart qubits in multipart qubit circuits
  • Quantum computers execute programs using multipart qubit circuits.
  • Represent the multipart qubit |jvj^j^> in a matrix as follows:

  • |jvj^j^> ≠ |j^jvj^> ≠ |j^j^jv>
  • However, |jvj^j^> = |jv-j^j^> = |jvj^-j^> = |jvj^j^>
    • A column of bits forms a multipart qubit. An odd number of flips, , results in a flip sign preceding a multipart qubit. For example:
      • |jvj^j^> = |jv-j^j^> = |jvj^-j^> = |jvj^j^>
      • = \begin {bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1^v \\ 0 \\ 0 \\ 0 \end{bmatrix}
      • Note that the post on next post on matrices shows the calculation of this multipart qubit.

  • In the multipart qubits |00100> + |01100> the second part is flipped. Determine the flip sign of a part of a multipart qubit by the elements of the qubit. An odd number of v Opposite Signs require a flip to proceed the part.
  • Primary and dependent single qubits make up a multipart qubit

Superposition and Entanglement and Mega Qubits

  • A qubit splitter  changes |j^> or |jv>  into superposition and forms a mega qubit. For example: A Hadamard gate splits |j^> into the mega qubit |j^> + |jv> and splits |jv> into the mega qubit |j^> + |jv>.
  • Only the primary qubits of a multipart qubit are put in superposition because the others will get there after the implementation of dependencies.
  • The number of possible independent states is 2n where n is the number of primary qubits. These possible independent states form a mega qubit.
  • Entangled qubits are orthogonal within each qubit and between states. For example: In the entangled multipart qubit: |ψ> = 1^/√2(|j^j^> + |jvjv>):
    • The first qubit Q0 state is |j^> +  |jv> as follows:  
      • Q0 = \begin {bmatrix} 1^h  \\ 0 \end{bmatrix}  +   \begin {bmatrix} 0  \\ 1^v  \end{bmatrix}=  1/\sqrt{2}\begin {bmatrix} 1^h  \\ 1^v  \end{bmatrix}  
      • The two elements within Q0 are orthogonal
    • The second qubit Q1 represents |j^> + |jv> as follows:
      • Q1 =   \begin {bmatrix} 1^h  \\ 0 \end{bmatrix}  +   \begin {bmatrix} 0  \\ 1^v  \end{bmatrix} = 1/\sqrt{2}\begin{bmatrix} 1^h \\ 1^v\end{bmatrix} 
      • The two elements within Q1 are orthogonal
    • The states |j^j^> and |jvjv> are orthogonal because
      • <j^j^|.|jvjv> = [1^ 0 0 0]  .   \begin {bmatrix} 0 \\ 0 \\ 0  \\ 1^v  \end{bmatrix} = 0 

Next: Matrices

Previous: Basis and Born’s Rule

Share to:

Leave a Reply

Your email address will not be published. Required fields are marked *