January 3, 2025
Search
Search
Close this search box.

R3 – Exponentiation – Fractions, Flip Sign and Rules

This post covers the rules of R3 exponentiation. It also describes the use of fractions and flip sign with exponentiation along with some examples.

Fractions

Exponents in fractions represent multiplication roots. The post on R3 roots outlined how the Counter and Full roots of Opposite Values are always equal and how there is only 1 root in R3 for an expression.

  1. 101/2j^ = (2√10j^)1 = (3.16j^)1  = 3.16j^ 
  2. 101/2jv = (2√10jv)1 = (3.16jv)1 = 3.16jv 
  3. 102/3i^ = (3√10i^)2 = (2.154i^)2 = 4.64i^   
    • Note: 4.64i^3 = 100i^ = 10i^2
  4. 102/3iv = (3√10iv)2 = (2.154iv)2 = 4.64iv                            
  5. 103/4^ = (4√10^)3 = (1.778^)3 = 5.62^ 
  6. 103/4v = (4√10v)3 = (1.778v)3 = 5.62v
  7. 102^/102iv = 100^/100iv = jv = 10(2+2)(^/iv) = 100jv = jv
  8. 101/2v = (√10v)1 = (3.16v)1 = 3.16v 
  9. 101/2i^ = (√10i^)1 = (3.16i^)1 = 3.16i^
  10. 101/2iv = (√10iv)1 = (3.16iv)1 = 3.16iv
  11. 103/4iv = (4√10iv)3 = (1.778iv)3 5.62iv

Exponent with Flip Sign and Fractions as Reciprocals of Roots

Exponents with a flip sign before a fraction represents the reciprocals of roots. For example:

  • 10j^-2/3 = j^/102/3 = j^/(3√102) = j^/(2.1542) =j^/4.64^ = 0.216j^
  • 10jv-2/3 = jv/102/3 = jv/(3√102) = jv/(2.1542) = jv/4.64 = 0.216jv  
  • 10i^-1/2 = i^/101/2 = i^/(√10) = i^/(3.16) =0.316i^
  • 10iv-1/2 = iv/101/2 = iv/(√10) = iv/3.16 =0.316iv

Flipping

The flip sign can also be used in exponentiation:

A flipped number can be raised exponentially.

  • (2^)2 = (2v)2 =  2v*2v = 4v
  • (2i^)3 = 2iv*2iv*2iv = 8iv                                          
  • (2iv)3 = 2i^*2i^*2i^ = 8i^
  • (2j^)2 = (2jv)2 =  2jv*2jv = 4jv
  • (2j^)3 = (2jv)3 =  2jv*2jv*2jv = 8jv

It makes no difference which of the flip and exponential operations takes place first, so the flip sign produces the same result if outside the brackets. For the last two examples above:

  • (2j^2)  = (2j^*2j^) = (4j^) = 4jv
  • (2j^3)  = (2j^*2j^*2j^) = (8j^) = 8jv

An exponent is not an Opposite Value. It is a Counter.

R3 Rules of Exponentiation

  1. xn*xm      = xn+m
  2. xn/xm     = xn+m, when x  0                
  3. (xn)m       = xnm
  4. (xy)n       = xnyn
  5. (x/y)n     = xn/yn, when y  0 
  6. xn           =  1‡x/|xn|, when x  0                              
  7. x           = x1/2
  8. x0            =  1x, when x  0 
  9. 00           = 0         
    • Note that it has not been agreed in classical maths whether 00 == 1 or is undefined.
  10. x2/3         = (3x)2
  11. (xyz)3     = x3y3z3
  12. 34√a     = 12a
  13.  (x + y + z)2  = (x2 + y2 + z2)

Next: Logs

Previous: Definition

Share to:

Leave a Reply

Your email address will not be published. Required fields are marked *