December 27, 2024
Search
Search
Close this search box.

R1 – Roots – Expressions

This post examines some examples of the full roots of expressions in R1. Calculate the full root as the root of the Counter times the root of the Unitary. 

Examples

  • √(x??) = √x*√(1x‡x )
    • For example where x = 16^:
      • √(16^) = √16*√1^ = 4*1^ = 4^ or
      • √(16^) = √16*√1^ = 4*1v = 4v

  • √(2x2 ) = √2*√x2*√(1x‡x) = x√2*√(1x‡x)
    • For example where x = 3^:
      • √(2*3^2 ) = √(18^) = √18*√1^ = 3√2*1^ = 3√2^ or
        • = 3√2*1v = 3√2v

  • √((x + 1^/x)2 + 4(x + 1v/x))
    • = √(x2 + 2^ + 1^/x2  + 4x + 4^/x
    • For example where x = 3^:
      • = √((3^+ 1^/3^)2 + 4(3^ + 1v/3^)) = √((10/3^)2 + 4(8/3^))
        • = √(100/9^ + 32/3v)
        • = √(4/9^) = 0.667^ or 0.667v
      • Or = √(3^2 + 2^ + 1^/3^2  + 4*3^ + 4^/3^)
        • = √(9^+ 2^ + 1/9^  + 12v + 4/3^)
        • = √(4/9^) = 0.667^ or 0.667v

  • Calculate the root of the last expression directly as:
    • √((x^ + 1^/x)2 + 4(x^ + 1v/x))
      • = √((3^ + 1^/3^)2 + 4(3^ + 1v/3^))
      • = √(3.333^2 + 4(2.666^)
      • = √(11.11^ + 10.664v)
      • = √(0.446^) = 0.667^ or 0.667v

Conclusion

Our online calculator can help with the calculation of the roots of R1 expressions.

Next: Exponentiation

Previous: Roots Definition

Share to:

Leave a Reply

Your email address will not be published. Required fields are marked *